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and similarly for mode n. In this case, the transforms are

Xm(p)=
2K(cos/3h~ –COS Kh~)

(A15)
sin KhM(K2–/32)

~,(f)=
sin (fin, /2)

(f%l/2)
(A16)

Note that when (A15) and (A16) are substituted into (A12), the
only place that the stagger between the modes enters is the factor
Cospxocos jjlo.

It should be noted that in evaluating (A9) or (A12) for real C,C
(i.e., lossless slab), the integrand is singular when k satisfies

gsinhgt + c,Cycoshgt = O. (A17)

If c~, is complex (i.e., a lossy slab), then the values of k which

satisfy (A17) are complex, and the integrand will be large but not

singular., In either case, numerical integration in the vicinity of

the singularity or near singularity will. be difficult and time

consuming. One should perform this region of the integraf ana-

lytically using residue theory or similar techniques.

The right-hand vector in tlie moment-method solution is given

by (6). Omitting all details, for a surface-patch mode center at the

origin (i.e., mode ~m,in Fig. 6) and ~ located at ( Xf, yf ) the result

is

where
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Q. ky sinhgt

g(gsifigt + crCycoshgt)”
(A19)
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Analysis of the Hybrid Modes for an Eccentrically

Cladded Fiber
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,-fbstract —This paper examines the hybrid-cladding modes of an ec-

centrically cladded three-layer dielectric fiber. The solutions are specialized

to smafl eccentricities, and exact closed-form expressions for the nororaf-
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ized deviations of the cutoff wavenumbers from those of th~ concentric

case are determined. Numerical results for various types of hybrid-cladding

modes of the fiber are given. For certain vafues of the parameters, it is

possible to enhance the operating bandwidth of the basic hybrid mode

HE ~1 over the conventional concentric fiber because its cutoff frequency

can be shown to remain zero.

I. INTRODUCTION

This paper extends the results of a previous work [1] for the

symmetrical modes in a cladded fiber to the more interesting and

practical case of its hybrid modes. The eccentricity d (Fig. 1)
might arise either as a manufacturing defect or as an intentional
feature of the fiber with the purpose of improving the operating
characteristics. The main difference in the a.mdysis of the two
cases lies in the complexity of the limiting forms for the cutoff
condition of the various hybrid modes. The same final expression
for the cutoff wavenumbers of the cladding modes knm ( d) is

obtained

kn&4)=k nm(0)[l+gn m(knm(0)d)2] (1)

where for the normalized deviations gn ~, closed-form but more

complicated expressions are developed. For certain values of the

parameters, it is possible in conjunction with the results of [1] to

enhance the operating bandwidth of the basic hybrid mode HE1l

over the conventional concentric fiber. Numerical results for

various hybrid modes and for severaf profiles of cladded fibers

are also included.

II. Tm ANALYSIS

Referring to the waveguide of Fig. 1, which is a perturbation of

the more commonly known concentric structure and with as-

sumed harmonic time dependence exp ( i u t), the longitudinal
field components E:(P) and H;, (P) can be expanded in terms of

the appropriate Bessel and azimuthaf functions as follows:
.

[

Cn Dn
+ ~, JH(k2r1)+D,

1)
K(%rl) sin(ndl) e-”= (3)

,1 n

E:,(p) =
m

X[

A B
:“ cos(rz@2)+ B~” sin ( n02 )

H=:(P) .=0 ~3n 3. 1

.H!1)(k3r2)e-’~’ (4)

where k, = (W2p, f, – y2)1/2, i =1,2,3. The superscript 1 or 2

denotes the reference center of coordinates (see Fig. 1). The

subscript 1, 2, or 3 denotes the region of space.

The boundary conditions at rl = RI and r2 = R‘ require that

the tangential components of ~, ~ be continuous [1], This further

necessitates the re-expansion of the field components E},, Hj, in

terms of cylindrical circular wavefunctions around the axis 02

using translational addition theorems [2].

The end result is (4) and (5) of [1]. We then turn our attention

to the hydrid modes of the fiber by considering values of p >1,

whereas the symmetrical modes of [1] correspond top = O.
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TABLE Ia

In VALUES OF uu~ (0) (c,l = 2.341, C,2= 2.25), q = Rl\R2

%, ps
mod, q = 0.05 q = 0.2 q , O.* q = 0,6 q = 0.8 q , 0.95

~11 0 0 0 0 0 0

~z 1 2.79568 2.79622 2.79152 2.77609 2.74975 ‘2.727W

EH1~ 3.83019 3.81027 3.77’253 3.7&717 3.12381 3.70514

=12 3.83170 3.83080 3.82021 3.79180 3.75017

E=,~2
Q

3,71222

x ’31 1+.281119 4.28&12 4.28099 4.26021 4.21148 4.16958

EH21 5.13562 5. 13U80 5. 12U95 5.09298 5.02855 +.97356

Imkl 5.61536 5.61534 5.61377 5.59289 5.51914 5.45948

~22 5.73123 5.72523 5.67630 5.6173 II 5.51987 5.51966

EH31 6.38016 6.38003 6. 37U34 6.34016 6.25490 6.17956

~51 6.87539 6.87538 6.87469 6.85648 6.76919 6.68116

EH12 7.01077 6.96325 6.91781 6.86031 6.62088 6,76468

Fig 1. Cross section of theeccentric clrculm fiber TABLE Ib
VALUESOFg~~ (eHoE MODES)

In a cladded fiber, two main types of modes (cladding and

core) propagate, each with the appropriate cutoff condition [3]. In

each case, this condition suggests a particular limiting procedure

for the evaluation of the various terms in the characteristic

determinant of the problem [1]. Also, it may be noted here that

apart from the symmetricrd case [1], the modes of a concentric

cladded fiber are, in general, hybrid, i.e., HE and EH. When the

waveguide becomes eccentric, each type of HE/EH mode splits

into what are called eHoE, oHeE and eEoH, and oEeH modes, in

accordance with the angular symmetry of the E- and H-fields.

They also correspond to the ETM, OTM, ETE, and OTE modes

of metallic waveguides. More specifically, the OECH and eHoE

modes originate from the system of equations in (4) of [1], while

the eEoH and oHeE ones originate from the system of equations

in (5).

It can be shown further that the cutoff wavenumbers k.n,(d)

of the cladding modes have one-to-one correspondence and have

values very near the kn~ (0) of the concentric case (n >0, m > 1).
The line of reasoning is the same as in [2], but the limiting

procedures are more involved, and the expressions are more

lengthy and difficult to handle. The final result is expression (l),

in which the g.,,, ‘s are closed-form expressions, given in the

Appendix.

It has also been shown analytically that the cutoff wavenum-

bers of the basic (eHoE) II, (oHeE)ll modes continue to remain

zero, at least up to order ( kz d) 2, where k ~ is the wavenumber of

the field in region II (cladding). This fact rdso holds true in the

concentric case. A corresponding result has also been obtained in

the case of eccentric Goubau lines [2].

III. NUMERICAL RESULTS AND DISCUSSION

In this section, computed values of U,,m(0) = k.n (0) R ~ and the

corresponding values of g,,~ are given for various hybrid modes

and for several values of the parameters q = RI/R Z, c,1 (dkkc-

tric constant of core), and E,2 (dielectric constant of cladding).

They correspond to concentric fibers analyzed in [3] and extend

to many more values of the parameters.

This analytical method for small eccentricities has already been

applied in a variety of problems. An idea of its accuracy can be

gained by referring to the case of the eccentric metallic wave-

guides [4], where comparisons with existing numerical and experi-

mental results were possible.

After having proved that the cutoff equation for the hybrid

cladding modes of the concentric cladded fiber, obtained as a

speciaf case in our an~ysisj is fully equiv~ent to (4) in [317 we
have used the classification scheme for the hybrid modes pro-

posed there to obtain numerical results for the ten lowest order

mode q : 0.05 q , 0.2 q , 0.4 q , 0.6 q , 0.8 q , 0.95

-1. 5.10-2 -1.6. 10-2 -1.6.10-2

2.1. 10-4 U.3. 10-3 4.u. 10-3

1.8. 10-7 -7.9 .10-5 -3.4.10-4

2.8. 10-3 2.9.10-3 2.7.10-3

-3.0 .10-5 -2. 1.10-4 U.l!.lo-+

6.3. 10-3 7. 5.10-3 7.3. 10-3

-9. 5.10-3 -1.6. 10-2 -1.2, 10-2

-2.6. 10-6 -1.6. 10-+ -2.0.10-4

‘3.1. 10-$ 8.6.10-$ 8. 5.10-3

3.9. 10-4 1.3.10-3 U.5.1 O-4

-7 .9.10-3 -8. 6.10-3 -9.8. 10-3

I.u. lo-+ 1.9.10-3 u.z.l o-3

-9.5. 10-8 -6.4.10-5 -5.2.10-4

1.3. 10-3 1.6. 10-3 8.9,10-4

-1.9. 10-7 -1. o.10-3 2.u.10-3

U.3. 10-3 U. 5.10-3 U.2.10-3

-8.6. 10-3 -1. 0.10-2 -6.7. 10-3

-1. s. 10-8 -3.0. 10-6 1.8s 10-4

a.a.lo-s 5.3. 10-3 5.3. 10-3

2.7. 10-4 2.3.10-3 -2. 5.10-4

-1.5.10-2 -1.2.10-2 -9. 5.10-2

1. 3.10-3 8.3. 1O-* 1. 3.10-3

-Z.2. 10-3 -3.3. 10-3 5.2.10-4

2.7.10-3 u.u.l o-3 5.8.10-3

Z.l. 10-3 -1.7. 10-4 2.0.10-3

6.8.10-3 8.4.10-3 9.9. 10-3

-8.5. 10-3 -2.6. 10-a -1.4.10-2

1. U.1O-3 -2.4.10-4 1.7.10-3

8. 1.10-3 8.9.10-3 1.1. 10-2

3.1.10-3 2.3.10-4 6.9.10-*

-8.9.10-3 -6.6.10-3 -4.4.10-2

1.9.10-3 -7. 5.10-4 4.2. 10-4

-1. 1.10-+ 1. 5.10-3 1.9.10-3

-3.3.10-4 1.9.10-3 3.7.10-3

-4.8.10-3 1.9.10-3 2.5.10-3

3.2,10-3 4,3.10-3 6.3.10-3

-4. 5.10-3 -1.7.10-3 -7.7. 10-2

-3.5. 11S3 1.9.10-3 2.0.10-3

u.4.1o-3 4.9.10-3 7.2.10-3

1.1+.10-3 5.0.10-5 -2.7.10-4

hybrid cladding modes. The varying parameter is q = R1/R2 in

Table Ia & b, while (,1 and (,2 vary in Tables II and III.

Since the cutoff frequency of the basic hybrid mode HEII is

shown to remain at zero, it is possible in certain cases to enhance

the monomode operating bandwidth of this mode by increasing

the cutoff frequency of the next higher mode TMOI, as has been

pointed out in [1]. To give some numerical examples, we consider

the TMOI mode in the case C,l = 2.341,6,2 = 2.25, q = 0.4, RI = 0.1

mm, and d/R * = 0.19. From Table I in [1] we find the values

LLO1(0)= 2.3798 and gal = 2.7X 10– 3. In this case, the cutoff
frequency of the TMOI mode is fol (0)= 406.5 GHz and the

bandwidth increase is 0.22 GHz. In the case C,l = 5, C,2 = 2,

q = 0.4, RI = 0.1 mm, and d/R ~ = 0.19; the corresponding wdues

are UOI(0) = 1.7377, gal = 0.0707, and ~ol(0) = 331.9 GHz, and the

bandwidth increase is 2.55 GHz. For q = 0.75 (the other values of

the parameters being the same), UO1(0) = 1.3429, gal= 0.1057, and

~ol(0) = 256.5 GHz. The bandwidth increase is 3.3 GHz. In

general, the bandwidth increase becomes larger as (nl – n2)

increases. Therefore, the eccentric cladded fiber may be advanta-

geous over the concentric for monomode operation, particularly

when only bandwidth considerations are to be taken into account.

Of course, it maybe expected that the baudwidth enhancement

will increase with the eccentricity, noticing that we are restricted

here only to small values of kd. We further notice that the

practical bandwidth of the HE1l mode should not be considered

to extend down to zero frequency, but to be confined somewhere



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQiJES, VOL. MTT-31, NO. 11, NOVEMRER 1983 947

mcde

TABLE II
q= R1/R2 = 0.2

e,,, = 2.3 +.7 = 2,29

u“.(o)

o
2.80588

3.02939

3.83161

4.29398

5.13553

5.62514

5.72793

6.38015

6.88506

7.00993

khm thin
eH.sE &eE

-1.5 .10-2

2.9,10-4

-Q.1.10-7

3.1.10-3

-3.3.10-5

6.6.10-3

-1.6.10-2

-8.1.10-7

7.1.10-3

2.9.10-4

-7 ,5.10-3

2.0.10-4

-6,5.10-6

1.2.10-3

-9.6.10-8

4,1.10-3

-0,5.10-3

-1.5.10-7

5.1.10-3

2.5.10-*

q,l = 2.3 +2 = 2,2999

U“nl(o) ~nm am
e??oE oH,E

o
2.80821 -1,2.10-2 -7.2.10-3

3.83168 2.9.10-6 2.1.10-6

3,!33170 -8.0.10-9 -6.6.10-8

4.29638 2.1.10-3 9,8.10-4

s,13S62 -3,8.10-7 +.2.10-8

5,62752 3.2.10-3 3,9.10-3

5.73898 -1.0. 10-3 -8,1.10-3

6,38016 2,8.10-7 2.3.10-8

6.887u2 5.4.10-3 %.9.10-3

7.01555 2.9.10-6 2.1+.10-6

TABLE III
q= R1/R2 =0.2

Cpl s 5 EF’2 = 2

In.xle Unm(o) Enm %m
e3foE oHeE

HEII 0

HE2~ 2.72516 -4.1.10-2 -I+.3 .10-2

EH1l 3.29505 6.7.10-2 6.2.10-2

~12 3,79625 -3,6.10-3 -5,0.10-3

~31 4.21630 -7 ,3.10-U -2.3.10-3

U121 5.11152 3.0.10-3 3.6.10-3

~22 5.47327 0,31165 0.+599

EH12 5.5188* -3,2.10-2 -3.6.10-2

ml 5,$4837 5,3.10-3 3.3.10-3

EH3 I 6.3772S 1,9.10-2 1,6.10-3

’51 6,80.387 6,5.10-2 4.3.10-2

around the operational range of the fiber. This imdies that in.
evaluating the enhancement, the ratio of 3.3/256.5~ in the last
case, for instance, is meaningless.

Comparing the values of gn~ given in Tables Ib and III, we
observe that these values are, in general, small when n~= n z
(~, = c;(z) and become larger as (nl – n2) increases. Therefore,

the eccentricity, considered as a manufacturing defect, is less
important in large core/small A monomode fibers than in smrdl
core/large A ones.

we observe that when nl = n z (n, = C}f2), the gnm of the oHeE
modes are smaller than the corresponding coefficients of the
eHoE modes. Quite the opposite is observed when n~ and n z
differ significantly. It should also be noticed that, in this case, the
ordering of the modes on the basis of their cutoff frequency does
change (Table III). Another useful observation is that the abso-
lute values of g.~, for all modes, become smaller as q ~ O and
C,l – <,Z + O, while in the case q -1 they become Iwger. This is

expected because as q ~ 1, even a small eccentricity creates a
large disturbance of the cross section of the fiber. We also
observe that in all three cases,g + O,6,1– (,2 + O, and q ~ 1, the

values of u. ~ (0) approach the well-known values for the dielec-
tric rod.

In Fig. 2, the dependence of un~ versus q = R1/R z is shown

for a cladded fiber with C,l = 5 and <,2=2, for the concentric

HE21 mode ( d/R z = O) and the eccentric (oHeE) 21and (eHoE) 21
modes with d/R z = 0.18.

The chosen value of d/R ~ satisfies the physical limitation

d/R z <1 – q for all v~ues of q. In Fig. 3, the ufl~ versus q is

shown for a cladded fiber with C.l = 5 and C,2 = 2, for the HEIZ

mode in the concentric case (d/R* = O) and the (oHeE) 12 and

(eHoE)12 modes in the eccentric mode with d/R2 = 0.13. Finally,

t

\,
‘a

\

\, \

HE% }dllh=o
,. \\

.
\\

–– (owh

\

‘\:\
24,

f

,\

‘— (eU&h ~lUt= ‘“18

20-

\

4.9
‘\:.

\.’..

\
‘\

4.8

I

Fig. 2.

0:; & 0,3 ti as @s c1? as 0.9

q

Cutoff wavenmnber vsriation versus q = R1/R * for the HE21 mode
of an eccentric cladded fiber ( C,l = 5, C,2 = 2, d/R ~= 0.18).

in Fig. 4, the un~ versus q is shown for a cladded fiber with

~rl = 5>c,z, for the EHli mode in the concentric case (d/R 2 = O)>
and the (eEoH) II and (oEeH) II modes in the eccentric one with

d/R z = 0.13. These figures illustrate the observations made be-
fore. Comparing with Fig. 3 in [1], we further observe a remarka-
ble similarity between the curves for the TE mode and the HE
modes, as well as between the curves for the TM mode and the
EH mode. This comparison confirms the prediction made in [1]
that the hybrid @-dependent modes are more affected by the
eccentricity. In Fig. 2, the fact is also illustrated that, for certain
values of the parameters, the g.. of a particular mode might be
zero, e.g., for the (oHeE) 21 the g.~ becomes zero for (,1= 5,
C,2= 2, and q = 0.58. In Fig. 3, we see that the g.~ of the
(oHeE)12 mode is zero for C,l = 2, e,, = 2, and q = 0.425, and the
same is true for the g.~ of the (eHoE)12 mode for C,l = 5, Crz= 2,
and q = 0.72.

IV. CONCLUSION

The eccentrically cladded dielectric fiber is examined, in the
case of small eccentricity, Exact closed-form expressions for the
normalized deviations g.~ of the concentric fiber are given.
Numerical results for the 10 lowest order hybrid modes are
obtained. It turns out that, in certain cases, it is possible to
enhance the monomode operating bandwidth of the basic mode
HEII over the concentric fiber.

APPEND1x

Throughout this Appendix, ~1( t), Y.(t) and n z O are the

Bessel functions, and ~:(t), Y;(t), and n >0 are their derivatives

with respect to the argument.
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Fig. 3 Cutoff wavenumber variation versus q = R1/R ~ for the HE12 mode Fig. 4. Cutoff wavenumber variation versus q = RI/R ~ for the EHII mode of
of an eccentric cladded fiber ( Crl = 5, 6,2= 2, d/R ~ = 0.13). an eccentnc cladded fiber (<,1 = 5, C,2 = 2, d/R ~ = 0.13).

The normalized deviations g.m for the eHoE modes are given
G2n = –

s En, n+l”sE.-l,n

by the following closed-form expressions: 4.1e._l,._l.Q~...Q_l,1_l_1 ‘
n> 2 (AlO)

Forn=l

g~~= {tf. T~(u)}-l{ G~~(u)+ Gzl(u)+Gsl(~)}, m>l

(Al)

where

U,m=ulm(o), ??2>1 (A2)

KIO. N~l. (JO(U) .Q&ll– YO(U)Qjll)
Gil(u)=

2. Q&n. L0
(A3)

G21=(u) =_ SE,l. {Q~,,. (J1(u)N~l- Y1(u)N.l, )+ Q~,2(N~1, -N~1)Y1(u)}
(A4)

4“&2”Qk.QL~

Y~( U)(NB12 – NB1)(Q221QL11 – QI121QL11
G,,(u) =

)
(A5)

4-Q~ll.Q~22

Tl(u) = dlell/du. (A6)

Forn>l and

g,,., = {U~,(U)}-l{Gl.( U)+ GZ,,(U)+Gq.(U)+ G~.(U)},

G22 = le22. G21/lell (All)

m~l (A7) G3n= _ ‘Fn, n+l (Q;n+l,n-Qbnn- Qjn,n+IQbI,n+I) (A~z)

where l“Q;nn”Qkn+l,n+l

U=u,,fi,(o), /’??>1 (AS)
G4,, = –

Fn,n-I(QJn-I,nQb.. -Q,n+IQLQ+I,n+I)I) ~A13)s

sEn, ?]+l”sEn+l, n
4“QLQLl,n-1

G1,, = –

d“QA..” QA. +1,. +l”le. +l,. +l

(A9)
Tn(u) = dlenn/du. (A14)
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The definitions for the various symbols appearing in expressions

(A1)-(A14) are the following.

We define

X=p. cou, zq=pu, ii= u/(8r2 –1)1’2

8 = 13r2+ l/(13r~ –1)1’2

where

P=RIIRI, ?,=~n~n (~=l,z,s)

cl) = (8,1 –1/8,2 –1)1’2.

We also define

~97(f3r2 -M{ W2($1 –1){

C1” = – 2(,2( 8,1 –1)
C*n= –

2ncr2(8,2 –&l)

n 21 (A15)

where { = (po/co)l’2.
We then define, for n z 1

[Aln = C2#2 8rlR2JnYn+ 8,2c:J#;

— COR { ~r2pr1Jnyn’+ ~i-lpr~Jn’%’ }] -%J.Y.
(A16)

[
A2n = ClnJ: + C2#2 8,1R2J: + 8,2c; (J~)2

—
cOR(’~l~,z + ‘.*~,l)J:J~l (A17)

Blfl = – ClfiY; + Cz~u2 [8r1R2~2 + 3,2C;(Y;)2

—COR(~rNrz + c,2PA)VY.] (A18)

B2n = – C2HU2 [ 13r1R2JvYn+ c~6,2J~Y:

— COR{ C~2Pr1JLYH + crNrzJnU }] + ClnJnyn

(A19)

where R = Jj ( x)/JH (x) and the argument of the J., Y., J:, and
~ functions is U1 everywhere.

Define now, for n >1, p, q ~ 1

Nxn=Jn(u) Xln+yn(U)X2n

lV;n=J; (u) Xln+Yn(u)X2n (A20)

,pq=J](~)xlq +5(tf)~2gN

;pq=J; (u)xlq+y;(u)x2qN (A21)

where X= A, B,

We then define, for n >1, p, q >1

Q...,, = ~ [N.n + J-Z,. 1, QL=~[G+(L/J)l

(A22)

Q.,pq = ~ [ X,, + {-?.,] , Q;pq= z [-%, +( N,xpq/’r)]

(A23)

where X=A, B and 2,. =J. (u), Z~. =Y. (u).

We further have

[
Xnn = [~ ‘“’nc

2(n–1)
-pr2q+(:).8.(+),

n >1 (A24)

n >1 (A25)

p>l, q 21 (A26)

[
q’pq = (a/{) “pq %]+(:).+’,,

2( fz-1) ‘(’2 u

p>l, q> 1 (A27)

where X= A, B and Zj. = J:(u), ZAn = Yn’(u).

We also have

KIO=J1(U)– ROY1(U), LO= JO(U) –ROYO(U) (A28)

where R. = J;(X) JO(U1)– coJo(x)J~( ul)/.T~(x)Yo(ul)–

COJO(X)Y((U1).

Finally we have

/ell = J1(u)N~l- Y1(u)N,,l

( )( U*
Ie,,M = L 6r2+l–

C,’2–1 n(n–1) )

+! ()I+tf

‘R (6,2–1) fr* – 1

Jn(u)N~n–Jn(u)N~~]

[w,z{Y:(u)N.n+J;(u)N~n}

+C,2{Z(U)N;.–J.(U)N;.}I (A30)

(Ep~ = Q;pq QApqC&q + QliPqCAPq – Q~PqcBpq – QBpqClpqs )

( c’ +Q;,qc.,p-Q,,qcL,, -Qh,,c~pq)+ QLqq QBPP Bpq

P # q (A31)

F,q = %pqcBpq + QBpqc&p – QbpqcBpp – QBppcipq Ts

P # q (A32)

The normalized deviations g,,~ for the oHeE modes are given

by the same closed-forms expressions after the interchange Ci + pi

(i= 0,1, 2) is performed everywhere.
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An Accurate Determination of Dielectric Loss Effect in

Monolithic Microwave Integrated Circuits Including

Microstrip and Coupled Microstrip Lines

D. MIRSHEKAR-SYAHKAL

Abstract —For the first time, by a rigorous armfysis, the performance of

MIC planar transmission fines with Iossy substrates can be studied accu-

rately. The generaf structural shape chosen for the analysis includes

infinitely thin metallic strips embedded within the layers of homogeneous

dielectric substrates. The rigor of the analysis was guaranteed by the

assumption of the propagation of an electromagnetic hybrid wave (i.e.,

TE + TM) along tbe planar transmission lines. An efficient computation

was, however, achieved by implementing the spectral domain approach as

the basis for the analysis. To test the anafysis, phase constants, characteris-

tic impedances, and attenuations, due to dielectric losses, were computed

for microstrip and coupled microstrip lines. The results obtained were

compared with those given previously by the spectral domain analysis in

which dielectric losses were not included directly [1]. The comparison

showed an excellent agreement between the two theories for low-loss

substrates. However, for Iossy substrates the present method is more

accurate.

I. INTRODUCTION

A new generation of microwave integrated circuits, the so-

called “Monolithic Microwave Integrated Circuits” (MMIC), is

under development. In MMIC, the aim is to integrate as many

passive and active microwave components as possible on one

single chip, in order to achieve the highest degree of compactness.

This, of course, would be of great advantage where a large

number of repeated circuits is required. Examples of this can be

found, for instance, in active arrays of antenna.

Substrates used for MMIC are of the semiconductor type [2].

This is because the substrate should provide a ground for the

fabrication of the active elements, as well as the passive compo-

nents. Propagation of the electromagnetic waves through a semi-

conductor medium is usually subject to a large attenuation [3].

The loss of propagating energy in a semiconductor substrate is

mainly due to the finite resistivity of the medium. For example,

silicon can have resistivity varying between 100–1200 O. cm [3].

Therefore, substrates used in MIC with similar resistivities could

dissipate energy equal to or greater than the energy dissipated in

metallic parts, i.e., strips.

So far, the capability of the theories developed for computing

the dielectric loss of planar transmission lines have been limited

either by the assumption of the quasi-TEM waves propagation

[4], [5], or, in some cases, by the very crude plane-wave approxi-

mation [6]. The first accurate analysis of dielectric loss in which

the effect of dispersion was considered was introduced by

Manuscript received April 21, 1983; revised June 20, 1983,
The author is with the London Centre for Marine Technology, University

College London, London WCIE 7JE England.

Mirshekar-Syahkaf and Davies [1], [7]. In this general analysis, a

perturbation technique was developed in order to deal with

planar structures with multidielectnc layers leading to

(1)

where & and fio are the unperturbed (zero-loss) fields. In (l), 1

denotes the number of dielectric layers, c,, tan rSiand $ are the i ‘h

dielectric layer permittivity, loss tangent, and cross-sectional area,

and u and S represent the angular frequency ~d the-total

transmission-line cross-sectional area, respectively. E’. and HO are

determined through the genera&ed sp~ctraf domain technique. A

computer program providing EOand HO, and subsequently az, is

rdready available [8].

Though expression (1) can adequately describe the attenuation

of a mode along a planar transmission line for substrates with

small tan 8, the accuracy of (1) is not known. Especially in very

lossy dielectric substrates, it is not only the accuracy of ad that is

important, but the effect of dielectric loss on wave length and on

characteristic impedance can also be of considerable significance,

particularly where the coupling of two lines becomes a point of

interest.

To alleviate the shortcomings of earlier theories, the gener-

alized method developed in [1], [7] is further extended to include

a priori a complex dielectric constant. This new extension of the

generalized spectral domain technique is then examined by solv-

ing two common structures, microstrip and coupled microstnp,

taking different loss values for their substrates. Through this

examination, the accuracy of the perturbation equation (1) can be

examined.

II. llIEORX

A generic cross section of an arbitrary multistrip multidielec-

tric MIC planar transmission line is shown in Fig. l(a). The

metallic enclosure is the inevitable packaging cover, and, there-

fore, its effect on the propagation of the wave has to be counted

in the analysis. It is assumed that the dielectrics are homogeneous

and the thickness of the strips satisfies the relation

skin depth << strip thickness << dielectric thickness.

A good metallization for the strips, and the use of a good

conductor for the enclosure, allows the assumption of a perfect

conductor for the metallic parts. However, the loss due to imper-

fect conductors can be calculated through a perturbation expres-

sion given in [1]. For brevity, conductor loss analysis is excluded

from the following theory.

Considering the dielectric layers, the dielectric loss for each

homogeneous dielectric region can be represented by the imagin-

ary parts of a complex dielectric constant, given by

where

In the case of

tan 8, = o.
Due to the

c1=6; –j6:=c:(l– Jtm81)

taut?, = E;/c; .

any loss-free dielectric, of course, c, = e: and

mixed dielectric boundarv of the moblem. an

accurate analysis without the assumption of an electromagnetic

hybrid wave (i.e., TE + TM) is not possible. Based on this rigor-
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