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and similarly for mode ». In this case, the transforms are

— _ 2K(cosBh,, —cos Kh,,)

Xn(B)= sin K, (K*— B2) (A15)
= _ sin(fw,,/2)

Y, (f )———( ) (A16)

Note that when (A15) and (A16) are substituted into (A12), the
only place that the stagger between the modes enters is the factor
cos Bx,c0s fy,.

It should be noted that in evaluatmg (A9) or (Al2) for real ¢,,
(i.e., lossless slab), the integrand is singular when k satisfies

(A17)

If €,, is complex (i.e., a lossy slab), then the values of k£ which
satisfy (A17) are complex, and the integrand will be large but not
singular., In either case, numerical integration in the vicinity of
the singularity or near singularity will. be difficult and time
consuming. One should perform this region of the integral ana-
lytically using residue theory or similar techniques.

The right-hand vector in the moment-method solution is given
by (6). Omitting all details, for a surface-patch mode center at the
origin (i.c., mode J,, in Fig. 6) and J, located at (x 1> ¥r) the result

is
V= TWe, .[ Qfﬂ/zﬁ

kysmhgt
g(gsmhgt +¢€,ycoshgr)

gsinhgr + ¢, ycoshgr = 0.

Y,,sin Bxcos fy, do dk  (A18)

where

(A19)
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Analysis of the Hybrid Modes for an Eccentrically
Cladded Fiber
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Abstract —This paper examines the hybrid-cladding modes of an ec-
centrically cladded three-layer dielectric fiber. The solutions are specialized
to small eccentricities, and exact closed-form expressions for the normal-
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ized deviations of the cutoff wavenumbers from those of the concentric
case are determined. Numerical results for various types of hybrid-cladding
modes of the fiber are given. For certain values of the parameters, it is
possible to enhance the operating bandwidth of the basic hybrid mode
HE,, over the conventional concentric fiber because its cutoff frequency
can be shown to remain zero. ;

I. INTRODUCTION

This paper extends the results of a previous work [1] for the
symmetrical modes in a cladded fiber to the more interesting and
practical case of its hybrid modes. The eccentricity d (Fig. 1)
might arise either as a manufacturing defect or as an intentional
feature of the fiber with the purpose of improving the operating
characteristics. The main difference in the analysis of the two
cases lies in the complexity of the limiting forms for the cutoff
condition of the various hybrid modes. The same final expression
for the cutoff wavenumbers of the cladding modes k,,,(d) is
obtained

Ko (d) =k (O)[ 1+ g1, (K, (0) )] (1)

where for the normalized deviations g,,,, closed-form but more
complicated expressions are developed. For certain values of the
parameters, it is possible in conjunction with the results of [1] to
enhance the operating bandwidth of the basic hybrid mode HE,;
over the conventional concentric fiber. Numerical results for
vatious hybrid modes and for several profiles of cladded fibers
are also included.

II. THE ANALYSIS

Referring to the waveguide of Fig. 1, which is a perturbation of
the more commonly known concentric structure and with as-
sumed harmonic time dependence exp(iwt), the longitudinal
field components E/ (P) and H/ (P) can be expanded in terms of
the appropriate Bessel and azimuthal functions as follows:

£ (P) i [Z, cos(nf,)+

N

B", Sin(n(’l)]'Jn(klrl)e_'y’ @

HL(P) T ’
B _ 2 [[4 5, |
H:}g(p)=n¥ {[A’J (k2r1)+B,; Y,,(kzrl)}cos(nﬂl)

G D,
+ [C,Jn(k2r1)+ D Yn(kz"l)} sin(nﬂl)} e ' (3)

e

n=20 3n

H (k) e

sin{né, )]
4)

where k, = (w’p,e, —y?)"?, i=1,2,3. The superscript 1 or 2
denotes the reference center of coordinates (see Fig. 1). The
subscript 1, 2, or 3 denotes the region of space.

The boundary conditions at », = R; and r, = R, require that
the tangential components of E, H be continuous [1]. This further
necessitates the re-expansion of the field components EX, H:, in
terms of cylindrical circular wavefunctions around the axis 0,
using translational addition theorems [2].

The end result is (4) and (5) of [1]. We then turn our attention
to the hydrid modes of the fiber by considering values of p > 1,
whereas the symmetrical modes of [1] correspond to p = 0.
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Cross section of the eccentric circular fiber

Fig 1.

In a cladded fiber, two main types of modes (cladding and
core) propagate, each with the appropriate cutoff condition [3]. In
each case, this condition suggests a particular limiting procedure
for the evaluation of the various terms in the characteristic
determinant of the problem [1]. Also, it may be noted here that
apart from the symmetrical case [1], the modes of a concentric
cladded fiber are, in general, hybrid, ie., HE and EH. When the
waveguide becomes eccentric, each type of HE/EH mode splits
into what are called eHoE, oHeE and eEoH, and oEeH modes, in
accordance with the angular symmetry of the E- and H-fields.
They also correspond to the ETM, OTM, ETE, and OTE modes
of metallic waveguides. More specifically, the oEeH and eHoE
modes originate from the system of equations in (4) of [1], while
the eEoH and oHeE ones originate from the system of equations
in (5).

It can be shown further that the cutoff wavenumbers k,,,,(d)
of the cladding modes have one-to-one correspondence and have
values very near the k,,,(0) of the concentric case (n >0, m >1).
The line of reasoning is the same as in [2], but the limiting
procedures are more involved, and the expressions are more
lengthy and difficult to handle. The final result is expression (1),
in which the g,,’s are closed-form expressions, given in the
Appendix.

It has also been shown analytically that the cutoff wavenum-
bers of the basic (¢€HoE),;,(0HeE),; modes continue to remain
zero, at least up to order (k,d)?, where k, is the wavenumber of
the field in region II (cladding). This fact also holds true in the
concentric case. A corresponding result has also been obtained in
the case of eccentric Goubau lines [2].

III. NUMERICAL RESULTS AND DISCUSSION

In this section, computed values of «,,,,(0) = k,,,,(O) R, and the
corresponding values of g, are given for various hybrid modes
and for several values of the parameters ¢ = R, /R, €, (dielec-
tric constant of core), and €,, (dielectric constant of cladding).
They correspond to concentric fibers analyzed in [3] and extend
to many more values of the parameters.

This analytical method for small eccentricities has already been
applied in a variety of problems. An idea of its accuracy can be
gained by referring to the case of the eccentric metallic wave-
guides [4], where comparisons with existing numerical and experi-
mental results were possible.

After having proved that the cutoff equation for the hybrid
cladding modes of the concentric cladded fiber, obtained as a
special case in our analysis, is fully equivalent to (4) in [3], we
have used the classification scheme for the hybrid modes pro-
posed there to obtain numerical results for the ten lowest order
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TABLE Ia
VALUES OF u,,,,(0) (¢,, = 2.341, ¢,, = 2.25), g = R, /R,

mode q = 0.05 q=0.2 q = 0.8 Q=06 q= 0.8 q = 0,95
HEqy 0 0 0 0 0 0
HE1 2.79568 2.79622  2.79152  2.77608  2.74975 2.727u4
EHy 3.83019 3.81027 3.77253  3.74717  3.72381 3.70514
HEq, 3.83170 3.83080  3.82021  3.79180  3.75017 3.71222
HE33 4.28419 ¥.28412  4,28099  4.26021  4.21148 4,16958
EHpy 5.13562 5.13480  5.12495  5.09298  5,02855 4.,97356
HEy1 5.61536 5.6153%  5.61377  5.59289  5.51914 5.45948
HED) 5.73123 5.72523  5.67630  5.6173%  5.51987 5.51966
EHg3y 6.38016 6.38003  6.3743%  6.3u016  6,25490 6.17956
HEg5) 6.87539 5.87538  6.87469  6.85648  6.76919 6.68116
FH1 7.01077 6.96325 6.91781  6,86031  6.82088 6.78468
TABLE Ib

VALUES OF g,,,. (¢€HoE MODES)
mode q 005 g=0.2 q=04 q=06 q=08 gq=0.95
HEyy - - - - - -
HEp1 -1.5:10°2 -1,6-10"2 -1,6°10"2 -1.5:30"2 -1.2.10"2 -9.5-1072
EH13 L10207%  4.3.207%  4.4.1073 1.3.107%  g.3.107%  1,3-1073
HE12 1.8:1077 -7.9.107° -3,4.10"% -2,2.103 -3.3.10"% 5,2.107%
HE31 2.8:10"%  2.9.10"3 2.7.10% 2.7.10-3 w.u.10-3 5.8.10°3
Efpy  -3.0-107% -2.1.107% u.4.207%  2,1.107% -1.7-107* 2,0.1073
FEyy 6.3°1073 7.5.107% 7.3.10°% 6.8:10"% 8.4.10"3 9.9.1073
HEpp  -9.5+1073 -1,6:107% -1,2:10"2 -8,5:10"3 -2,6:107% -1.4.1072
FHa;  -2.6:1076 -1.6-10™% -2,0-107% 1.4:1073 -2.4.107% 1.7.1073
HEs5) 9.1-107%  g.5:107% 8.5°10"% 8.1:1073 9,9:107% 1.1.1072
EHyq 3.9-10™%  1.3-1073  4.5.107%  3.,1-2073  2.3-107% 6.0.107%
HE11 - - - - - -
HEp;  -7.9.1073 -g.6.10"% -9.8.107% -8.9:1073  -6.6.1073 -u.4.1072
EHy;  1.4:107%  1,8:.2073  u,2.107%  1,9-107%  -7,5.107%  5.2.107%
HEyp  -9.5:1078 -6.4+107%  -5,2.107% -1.1-107%  1.5.107%  1.9.1073
KE3;  1.3+107%  1.6v107%  8.97107% -3.3.107%  1.9:107% 3,7-107%
EHy,  -1.9:2077 -1,0¢107%  2.4.107% -u.8:107%  1.9.10% 2,5-1073
HEy;  4.3°1073  u,5:1073  4,2:107%  3,2:1073  4,3.1073  6.3.10°3
HE,p -8.6°1073 -1.0°1072 -6.7-1073  -4,5¢1073 -1.7.107% -7.7.1072
EHy; -1.5°3078 -3,0.1076  1,8:10°% -3,5:10"%  1,9:307% 2.0.1073
HE51 3.3:10°3  5.3.1073 5.3.10°3 y,4.16™3 4,9.107%  7.2.1073
EHp  2.7:107%  2,3:.107%  -2,5.307%  1,4:107%  5,0°1075 -2.7-107%

hybrid cladding modes. The varying parameter is ¢ = R; /R, in
Table Ia & b, while ¢,; and ¢,, vary in Tables IT and IIIL.

Since the cutoff frequency of the basic hybrid mode HE,; is
shown to remain at zero, it is possible in certain cases to enhance
the monomode operating bandwidth of this mode by increasing
the cutoff frequency of the next higher mode TM,, as has been
pointed out in [1]. To give some numerical examples, we consider
the TM; mode in the case €,; = 2.341,¢,, =2.25,9g=04,R, = 0.1
mm, and d/R, = 0.19. From Table I in [1] we find the values
15 (0)=23798 and g, =27x1073 In this case, the cutoff
frequency of the TMg; mode is f3;(0) — 406.5 GHz and the
bandwidth increase is 0.22 GHz. In the case ¢,,=35, ¢€,, =2,
g =04, R, =01 mm, and d /R, = 0.19; the corresponding values
are uy,(0) =1.7377, g4, = 0.0707, and f,; (0) = 331.9 GHz, and the
bandwidth increase is 2.55 GHz. For ¢ = 0.75 (the other values of
the parameters being the same), u, (0) =1.3429, g, = 0.1057, and
f01(0)=1256.5 GHz. The bandwidth increase is 3.3 GHz. In
general, the bandwidth increase becomes larger as (n; — ny)
increases. Therefore, the eccentric cladded fiber may be advanta-
geous over the concentric for monomode operation, particularly
when only bandwidth considerations are to be taken into account.

Of course, it may be expected that the bandwidth enhancement
will increase with the eccentricity, noticing that we are restricted
here only to small values of kd. We further notice that the
practical bandwidth of the HE,; mode should not be considered
to extend down to zero frequency, but to be confined somewhere
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TABLEII
g=R,/R,=02
epp = 2.3 €pz = 2,29 €p1 = 2,3 €po = 2,2999
mte | et | f g ) o8
HEp; 0 - - 0 - -
HEy; | 2.80588 | -1.5.107%2  -7,5-1073 2.80821  -1,2:1072 -7,2-1073
EHyy | 3.82939 | 2,9+107%  2,0-107% 3.83168  2.9-10% 2.1-1076
HE1p | 3.83161 | -8.1-1077 -g,5-1076 3.83170  -8,0-107% -6,6-1078
HEg; | #.20398 | 3.1°1073  1,2.1073 4,29638  2.1-107% 9,8-107%
EHp; | 5.13553 | -3.3.10°3  -9,6-1078 5,13562  -3,8.10"7 4,2-107%
HEyy | 5.62514 | 6,6.1073  u,1-1073 5,62752  3.2-10"3 3,9-1073
HEpy | 5.72793 | -1.6°1072  -g,5.1073 5,73898  -1,0-10"3 -g,1-103
EHyy | 6.38015 | -8.1.107 -1,5-1077 6.38016  2.8-10°7 2,3-10°%
HEgy | 6.88506 | 7.7-1073 5.1-10"3 6.9887u2 5,4+10"3 4,9-10"3
EHyjp | 7.00993 | 2.3-107%  2,5-107% 7.01585  2,9:1075 2,4-1078
TABLE III
g=R,/R,=02
epl 5 5 €y = 2
mode  une(0) R oher
HE31 0 - -
HE2y 2,72516  -4,1-10°2 ~4,3.10-2
EHyp 3.29505 6.7:1072  6.2:10°2
HE12 3,79625  ~3,6°10"3 -5,0-1073
HE3y 4,21630  -7,3.10"% -2,3.10°3
EHp1 5,11152 3.0-10"%  3,6-107°3
HEg7 5.47327 0,3465 0,4599
EH12 5.51884  -3,2.102 -3.6-1072
HEy) 5,54837 5.3-10°3  3,3-1072
EH31 6.37725 1,9-10°2  1,6°1073
HEg) 6.80887 6.5-10"2  4,3-10"2

around the operational range of the fiber. This implies that in
evaluating the enhancement, the ratio of 3.3/256.5, in the last
case, for instance, is meaningless.

Comparing the values of g,,, given in Tables Ib and III, we
observe that these values are, in general, small when n, =n,
(n,=¢€?) and become larger as (n, — n,) increases. Therefore,
the eccentricity, considered as a manufacturing defect, is less
important in large core/small A monomode fibers than in small
core/large A ones.

We observe that when n, = n, (n, = ¢/?), the g,,,, of the cHeE
modes are smaller than the corresponding coefficients of the
eHoE modes. Quite the opposite is observed when n; and n,
differ significantly. It should also be noticed that, in this case, the
ordering of the modes on the basis of their cutoff frequency does
change (Table III). Another useful observation is that the abso-
lute values of g,,,, for all modes, become smaller as 4 > 0 and
€,1 — €,, — 0, while in the case ¢ »1 they become larger. This is
expected because as g —1, even a small eccentricity creates a
large disturbance of the cross section of the fiber. We also
observe that in all three cases, ¢ — 0, ¢,; — ¢, = 0, and g — 1, the
values of u,,,(0) approach the well-known values for the dielec-
tric rod.

In Fig, 2, the dependence of «,,, versus ¢ — Ry /R, 1s shown
for a cladded fiber with ¢,, =35 and ¢,, =2, for the concentric
HE,, mode (d /R, = 0) and the eccentric (0HeE),; and (¢HoE),,
modes with d /R, = 0.18.

The chosen value of d/R, satisfies the physical limitation
d/R, <1— q for all values of ¢. In Fig. 3, the u,,, versus q is
shown for a cladded fiber with ¢,, = 5 and ¢,, = 2, for the HE;
mode in the concentric case (d/R, = 0) and the (oHeE),, and
(eHoE),, modes in the eccentric mode with d /R, = 0.13. Finally,
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Fig. 2. Cutoff wavenumber variation versus 4 = R, /R, for the HE,, mode
of an eccentric cladded fiber (€,4 =5, ¢, =2, d /R, = 0.18).

in Fig. 4, the u,,, versus g is shown for a cladded fiber with
€,,=>5,¢€,,, for the BH,; mode in the concentric case (d /R, = 0),
and the (¢EoH),; and (oEeH),; modes in the eccentric one with
d /R, =0.13. These figures illustrate the observations made be-
fore. Comparing with Fig. 3 in [1], we further observe a remarka-
ble similarity between the curves for the TE mode and the HE
modes, as well as between the curves for the TM mode and the
EH mode. This comparison confirms the prediction made in [1]
that the hybrid ©-dependent modes are more affected by the
eccentricity. In Fig. 2, the fact is also illustrated that, for certain
values of the parameters, the g, ,, of a particular mode might be
zero, e.g., for the (oHeE),; the g,, becomes zero for €, =3,
€,=2, and ¢=058. In Fig. 3, we sec that the g,,, of the
(oHeE),, mode is zero for €,, = 2, €,, = 2, and g = 0.425, and the
same is true for the g,,, of the (¢HoE),, mode fore,; =5,¢,, =2,
and g =0.72.

IV. CONCLUSION

The eccentrically cladded dielectric fiber is examined, in the
case of small eccentricity. Exact closed-form expressions for the
normalized deviations g,,, of the concentric fiber are given.
Numerical results for the 10 lowest order hybrid modes are
obtained. It turns out that, in certain cases, it is possible to
enhance the monomode operating bandwidth of the basic mode
HE,; over the concentric fiber.

APPENDIX

Throughout this Appendix, J,(¢), Y,(¢) and n=0 are the
Bessel functions, and J,/(¢), Y,/(¢), and n > 0 are their derivatives
with respect to the argument.
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Fig. 3 Cutoff wavenumber vanation versus ¢ = R; /R, for the HEj; mode  Fig. 4. Cutoff wavenumber variation versus ¢ = Ry /R for the EH;; mode of
of an eccentric cladded fiber (¢,;=5,¢,, =2,d/R, =0.13). an eccentric cladded fiber (¢,,=5,¢,, = 2,d /R, = 0.13).
The normalized deviations g,,,,, for the eHoE modes are given Senn+t1"SEn—1,n
by the following closed-form expressions: G2a=" . , ’ n>2 (A10)
M g P * 4'len—1,n—1'QBnn'QBn—l,n—l
Forn=1
-1
gim={w T (1)} {Gu(u)+Gu(u)+Gy(u)}, m=1
(A1)
where
Upm = Ui (0)’ m 2> 1 (A2)
_ KlO'NBl'(JO(u)'Q;?n - Y()(”)Q,’m)
Gy (u)= - (A3)
2:Q% Lo
SE, - {Q%zz‘ (Jl(u)NBl - Yl(u)NAIZ)+ Q:uz(NBlz - NBl)Yl(u)} (A4
Gy =(u)=- , , )
4-ley Opi Obn
_ Yl(“)(Nmz_ NBl)(Q,"mem‘Q%mQQu) A5
Gy (u)= B , (A3)
4-Qp11- Chn
Ty (u) = dley; /du. (As6)
Forn>1 and
Gy =ley Gy /ley (A11)

gnm={u'T;(u)}__1{Gln(u)+Glr1(u)+G3n(u)+G4n(u)}’
m>1 (A1) G __ Senner (Qinein Qomn =Qnnsr Conrinsn) (a2
3n

7 7
where 4.QBnn'QBn+l,n+l

u=unm(0)’ le (AS) — SFn,n—l(Q;in—l,nQ)’an_Q,,4n,n+lQ),3n+l,n+1)
4'Q;¥an1’§n-—1.nf1

T,(u)=dle,, /du. (A14)

(A13)

SEn,n+1.SEn+1,n

Gln == 4 , , J
.QBnn'QBn-%—l,n-i—l. en+l.n+1
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The definitions for the various symbols appearing in expressions
(A1)-(Al4) are the following.
We define

X=p-cou, U =pu, a=u/(8,-1)"*
§=8,+1/(8,-1)"

where
p=R,/R,, 8,=¢.pu, (i=1,2,3)
co=1(8,—-1/8, ‘1)1/2-
We also define
C1n=“M = (8, 1§
2e,,(8,—1) g 2n¢€,,(0,,— 8,1)

n=1 (Al5)
where § = (o /€)%
We then define, for n >1
Aln = C2nu2 [ SrIRZJnYn + SrZCan/Yr;

- COR { ErZ:u’rl‘InYnl + €r1p’r2Jn,Yn,}] - Cln']n Yn

(A16)
A2n = Cann2 + C2nu2 [ 8r1R2']n2 + 8,26'8(.]"/)2
- COR(erlp‘r2 + 6r2"“r1)Jn/Jn] (A17)
N2
Bln == ClrJYn2 + CZnu2 [SARZY;Z + erC(%(Yn)
—coR(ep,n + erZI'Lrl)Y;rYn] (A18)
B, = = Cpu* [ 8o R,Y, + 38,7,
- COR { Erzp’rlJr,ty;z + crlurlJnY;t }] + Cln']ny;z
(A19)

where R =J(x)/J,(x) and the argument of the J,, ¥,, J;, and
Y, functions is u, everywhere.
Define now, forn >1,p, g =1

an=Jn(u)Xln+Yn(u)X2n

Niy=Tn(u) X, + Y, (u) Xy, (A20)
prq=Jp(u)qu+Yp(u)X2q
Nx'pq=Jp’(u)X1q+Y;,’(u)X2q (A21)

where X= A4, B.
We then define, forn >1, p,q=1
ani1=a[NY”+§ZYn]’ Q;HK=E[ZXH+(NXH/§)]
(A22)

Q~“P‘I=a[NXPq+§ZXP]’ Q;pq=a[zxp+(prq/§)]
(A23)

where X=A, B and Z,, = J,(u), Zp, =Y, (u).

We further have

n>1 (A24)
— an __]V_Y,rl n . an
ann_(u/g)[z(n_l) r2 u +(2) 8( u )9
n>1 (A25)
v/ Z! N,
gl =P Py 5. | 2Pe
CYP(] {u 2(17_1) Hr2 u ]+(2) 8 ( u )7
p>1, g=1 (A26)
;= prq ]Vx/pq P pr
C‘”"’_(u/su)[Z(n—l)"(’2 u +(5)'6'(7)’
p>1,  g>1 (A27)

where X=A, B and Z}, = J/(u), Z3, = Y,/ (u).
We also have
Kio=J1(u)— RoYi(u), Lo=Jo(u)= RoYo(u) (A28)
where R = J3(x)Jo(uy) = coJo(x)Tg(u1)/T5(x) Yo (uy) =
coJo(X) Y5 ().
Finally we have

le)y = Jl(“)NBr‘ Yl(“)NAl

le,, = ((—r}_——l-)(e,ZJrl—n—(’;ﬁ_l—))[Jn(u)NAn — Jn(u) Ng,]

4 ¢ u
+; (e,,—1) +(fr2*1)
'[l“rz{Yn’(“)NAn+J"/(M)NB"}

+ o { ¥, (u)Nj, — J,(u) Ng, }] (A30)

— ’ ’ . ’ — ’
Squ - QBM(QAMCBM + Ql’ﬁququ Qquchq QBMCAM)

+ Qﬁqu (QBppCl}pq + Q;J‘MCBW - QquCl/?pp - Qi?ppCqu) ’
p#q (A31)

=)’ ’ _- 0’ —_ ’
Squ - QBMCBM + QquCBpp QquCBpp QBppCqu’

p*q (A32)

The normalized deviations g,,, for the oHeE modes are given
by the same closed-forms expressions after the interchange €; © p;
(i=0,1,2) is performed everywhere.
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An Accurate Determination of Dielectric Loss Effect in
Monolithic Microwave Integrated Circuits Including
Microstrip and Coupled Microstrip Lines

D. MIRSHEKAR-SYAHKAL

Abstract —For the first time, by a rigorous analysis, the performance of
MIC planar transmission lines with lossy substrates can be studied accu-
rately. The general structural shape chosen for the analysis includes
infinitely thin metallic strips embedded within the layers of homogeneous
dielectric substrates. The rigor of the analysis was guaranteed by the
assumption of the propagation of an electromagnetic hybrid wave (i.e.,
TE+TM) along the planar transmission lines. An efficient computation
was, however, achieved by implementing the spectral domain approach as
the basis for the analysis. To test the analysis, phase constants, characteris-
tic impedances, and attenuations, due to dielectric losses, were computed
for microstrip and coupled microstrip lines. The results obtained were
compared with those given previously by the spectral domain analysis in
which dielectric losses were not included directly [1]. The comparison
showed an excellent agreement between the two theories for low-loss
substrates. However, for lossy substrates the present method is more
accurate.

1. INTRODUCTION

A new generation of microwave integrated circuits, the so-
called “Monolithic Microwave Integrated Circuits” (MMIC), is
under development. In MMIC, the aim is to integrate as many
passive and active microwave components as possible on one
single chip, in order to achieve the highest degree of compactness.
This, of course, would be of great advantage where a large
number of repeated circuits is required. Examples of this can be
found, for instance, in active arrays of antenna.

Substrates used for MMIC are of the semiconductor type [2].
This is because the substrate should provide a ground for the
fabrication of the active elements, as well as the passive compo-
nents. Propagation of the electromagnetic waves through a semi-
conductor medium is usually subject to a large attenuation [3].
The loss of propagating energy in a semiconductor substrate is
mainly due to the finite resistivity of the medium. For example,
silicon can have resistivity varying between 100-1200 € -cm [3].
Therefore, substrates used in MIC with similar resistivities could
dissipate energy equal to or greater than the energy dissipated in
metallic parts, i.e., strips.

So far, the capability of the theories developed for computing
the dielectric loss of planar transmission lines have been limited
cither by the assumption of the quasi-TEM waves propagation
{4], [5], or, in some cases, by the very crude plane-wave approxi-
mation [6]. The first accurate analysis of dielectric loss in which
the effect of dispersion was considered was introduced by
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Mirshekar-Syahkal and Davies {1], [7]. In this general analysis, a
perturbation technique was developed in order to deal with
planar structures with multidielectric layers leading to

I
wlglc,tané?,fj:gl[ﬁolzds
Qg = - - ¢y
2ReffSE0><Ho*-df

where EO and ﬁo are the unperturbed (zero-loss) fields. In (1), 7
denotes the number of dielectric layers, ¢,, tan8; and S, are the i ™
dielectric layer permittivity, loss tangent, and cross-sectional area,
and « and § represent the angular frequency and the_total
transmission-line cross-sectional area, respectively. E, and H; are
determined through the generalized spectral domain technique. A
computer program providing E, and H, and subsequently a, is
already available [8].

Though expression (1) can adequately describe the attentuation
of a mode along a planar transmission line for substrates with
small tand, the accuracy of (1) is not known. Especially in very
lossy dielectric substrates, it is not only the accuracy of a,, that is
important, but the effect of dielectric loss on wave length and on
characteristic impedance can also be of considerable significance,
particularly where the coupling of two lines becomes a point of
interest.

To alleviate the shortcomings of earlier theories, the gener-
alized method developed in [1], [7] is further extended to include
a priori a complex dielectric constant. This new extension of the
generalized spectral domain technique is then examined by solv-
ing two common structures, microstrip and coupled microstrip,
taking different loss values for their substrates. Through this
examination, the accuracy of the perturbation equation (1) can be
examined.

II. THEORY

A generic cross section of an arbitrary multistrip multidielec-
tric MIC planar transmission line is shown in Fig. 1(a). The
metallic enclosure is the inevitable packaging cover, and, there-
fore, its effect on the propagation of the wave has to be counted
in the analysis. It is assumed that the diclectrics are homogeneous
and the thickness of the strips satisfies the relation

skin depth << strip thickness < dielectric thickness.

. A good metallization for the strips, and the use of a good
conductor for the enclosure, allows the assumption of a perfect
conductor for the metallic parts. However, the loss due to imper-
fect conductors can be calculated through a perturbation expres-
sion given in [1]. For brevity, conductor loss analysis is excluded
from the following theory.

Considering the dielectric layers, the dielectric loss for each
homogeneous dielectric region can be represented by the imagin-
ary parts of a complex dielectric constant, given by

¢, =€/~ je/ =¢/(1~ jtan,)
where
tand, =€/’ /¢..

In the case of any loss-free dielectric, of course, ¢,=¢/ and
tand, = 0.

Due to the mixed dielectric boundary of the problem, an
accurate analysis without the assumption of an electromagnetic
hybrid wave (i.e., TE+TM) is not possible. Based on this rigor-
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